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A Microscopic Aggregation Model of Droplet 
Dynamics in Warm Clouds 

A. P r o v a t a  I and C. N i c o l i s  2 

Receioed November 24. 1992. final August 9, 1993 

A microscopic model of warm clouds involving input of water droplets, droplet- 
droplet aggregation, droplet breakup, and precipitation is presented. Numerical 
simulations and analytical arguments indicate that after the stage of growth and 
just before precipitation sets in, a warm cloud is characterized by a droplet-size 
distribution which follows from an inverse power law as a function of the 
droplet size. When precipitation is taken into account, the above distribution is 
transformed into a distribution decaying exponentially with the droplet size, in 
agreement with field observations. It is suggested that the initiation of rainfall 
in a precipitating warm cloud can be viewed as an instability triggered by the 
presence of a power-law distribution. 
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random walk. 

1. I N T R O D U C T I O N  

C l o u d s  rank a m o n g  the mos t  comp lex  and  in t r igu ing  na tu ra l  p h e n o m e n a .  
A vast  a m o u n t  of  l i t e ra ture  is devo t ed  to their  f o r m a t i o n  and  fur ther  

e v o l u t i o n  as well as to the cond i t i ons  under  which a c loud  can  cause 
precipitation.el"21 

A c loud  starts  with the c o n d e n s a t i o n  of  wa te r  v a p o r  a r o u n d  condensa -  

t ion nuclei  p resent  in the upper  levels of  the ear th ' s  a tmosphere .  Typica l  

nucleus  sizes invo lved  in this process  of  he t e rogeneous  nuc lea t ion  are  of  the 
o rde r  of  m i c r o m e t e r s  o r  less. H o m o g e n e o u s  nuclea t ion ,  while  in pr inciple  

possible,  tu rns  ou t  to be no t  very i m p o r t a n t  in the ear th ' s  a tmosphere .  

~Facult6 des Sciences and Center for Nonlinear Phenomena and Complex Systems, 
Universit/: Libre de Bruxelles, 1050 Bruxelles, Belgium. 

-' lnstitut Royal M~t~orologique de Belgique, 1180 Bruxelles, Belgium. 

75 

0022-4715/94/0100-0075507.00/0 t 1994 Plenum Publishing Corporation 



76 Provata and Nicolis 

With the continuous inflow of small droplets the cloud grows. As it 
ascends, its top may sometimes reach levels where the temperature is below 
the freezing point. Part of the liquid mass may then freeze and complex 
phenomena characteristic of aerosol clouds may occur. We do not consider 
such a possibility in the present paper, but focus entirely on "warm" clouds. 

A stable, nonprecipitating, warm cloud is an assembly of water 
droplets with a density of the order of 106 droplets per dm 3 of cloud. 
A droplet radius is on the average about r =  10/~m and typically beyond 
this value the number of droplets of a given size in the cloud decreases with 
the droplet size. ~tl A common characteristic shape of droplet size distribu- 
tions measured in different types of clouds corresponds to a probability 
density rising sharply from a low to a maximum value and then decreasing 
again for larger sizes, such that when plotted on a semilogarithmic scale, 
it exhibits a linear region in the range of large droplet sizes indicative of 
exponential decay. Other types of distributions are also observed, notably 
as a function of height, including bimodal ones. ~1"-'~ Still one common 
characteristic in the stable nonprecipitating phase of clouds remains the 
short-tail, exponential-like nature of the droplet size distribution in the 
region of large sizes. ~3~ 

In order that precipitation be initiated, a broadening of the droplet 
size distribution is clearly necessary to account for a substantial fraction of 
large drops falling under the effect of gravity. Typical raindrop sizes are 
of the order of 100-1000/am, with about 1 drop per dm 3 of air. Field 
observations and laboratory experiments have shown that the drop size 
distribution of rain follows also on the average an exponential decay in the 
range of large drop sizes. 141 

The traditional approach to cloud modeling is based on a continuous 
formalism combining the equations of fluid dynamics together with the 
thermodynamic relations describing phase transformations. Iz~ Until now, 
within the frame of reference of such an approach, the mechanisms causing 
the broadening of the cloud drop distribution and thus controlling the 
embryonic precipitation in clouds have not received a satisfactory inter- 
pretation. For instance, some researchers attribute it to the presence of a 
significant concentration of giant aerosol particles, ~5~ while others regard it 
as a result of large-scale turbulent mixing and flow. ~6) In the present paper 
a microscopic lattice model of a cloud is developed, which naturally leads 
to the broadening of the droplet size distribution. The model involves the 
input of small droplets, droplet-droplet aggregation, and in some cases the 
effect of spontaneous droplet breakup. 12~ Any initial drop size distribution 
subjected to the combined effects of the above processes is transformed into 
a final drop size distribution which follows a power law in the large size 
range. When, in addition, precipication is accounted for, through the 
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removal of cloud droplets, it is shown that the remaining droplets organize 
to form a stable cloud in which the droplet distribution exhibits a short tail 
in the same large size range. 

The work is organized as follows. In Section 2 we describe the model 
and present some analytical results based on a mean-field description of a 
cloud in the growth phase (G phase) and in the mature, precipitation phase 
(Pphase). Subsequently, we report, in Section 3, on the microscopic 
simulations performed in two dimensions for both cases considered in 
Section 2. The impact of the breakup mechanism on the steady state of the 
cloud during the G phase is also investigated. In the final Section 4, we 
compare our results with other theoretical and experimental findings and 
draw the main conclusions. 

2. T H E  M O D E L  A N D  THE M E A N - F I E L D  A N A L Y S I S  

Consider a volume of cubic shape within a developing cloud, located 
far from the cloud boundary and containing a large number of droplets, N. 
The droplets are placed on the sites of a regular cubic lattice and interact 
with each other through aggregation processes. Our objective will be to 
investigate, first, the growth process leading to a mature cloud and, second, 
the process leading eventually to precipitation. In both cases the central 
quantity to evaluate will be the drop-size distribution and, most par- 
ticularly, its structural change as the cloud switches from the growth to the 
precipitation phase and back. 

2.1. G r o w t h  Phase 

At each given time a constant influx of stable small droplets placed 
randomly on the lattice sites is stipulated. The sizes of these droplets are 
supposed to exceed the critical nucleation radius I1~ and to be distributed 
according to the probability distribution p(I). Once on the lattice, droplets 
perform a complex motion due to such factors as molecular diffusion, 
turbulent mixing, etc. It appears reasonable to approximate this complex 
motion with a diffusive random walk, which for simplicity will be assumed 
independent of the droplet size. When droplets meet during a collision, it 
is assumed that they aggregate instantaneously, creating droplets of larger 
and larger sizes. Droplet splitting and loss are neglected at this stage; 
loss plays an important role during the precipitation phase and will be 
discussed in the next subsection, whereas the general effects of particle 
splitting will be considered in Section 3. 

To proceed further, we make a mean-field assumption, known to be 
valid in space dimensions d>~2, ~7,s) and in the absence of anisotropy 
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induced, for instance, by gravity or other external fields. Within the 
framework of such an assumption the state of the system is described by 
the probability p(m, t) that at time t a water droplet of mass m will be 
located at some representative site. We also assume that p(m, t) evolves 
according to a Markovian process, whereby the probability to obtain a 
mass m at a certain site will only depend on the number of water droplets 
that were located on sites i, i = I ..... r at time t -  1 and subsequently jumped 
on the site under consideration during one time unit. In addition to the 
aggregating cloud droplets, one has to add the contribution of the input 
term. One may thus write 

( N ) ( 1 ) r  ( 1 )  N-r 
p(m, t )=p(1 )  r N 1 -  f i  p ( m , t - 1  (1) 

r = 0  i = 0  ~rk=omk+l=rn 

Here N is the total number of lattice sites and the combinatorial factor 
stands for the various ways to choose r particular sites among the N 
available ones, each site having an a priori probability 1IN to be chosen. 
The restriction m, + mz + . "  + mr + I= m expresses the fact that the sum 
of the masses of the droplets emanating from these sites plus the mass of 
the incoming droplets must total the mass of the site considered. In writing 
Eq. (I), one has also implicitly assumed that the coalescence efficiency is 
equal to unity. Introducing the generating function Z(p, t) as the Fourier 
transform of p(m, t), 

t) = f e-ipm p(m' t) dm (2) Z(p, 

one may transform Eq. (1) into the form 

Z(p, t) = f e-iOta dm 

f i  p(mi, t -  l)  :~-0-,k+ 
i = 0  / = r n  

(3) 

Using again Eq. (2) and introducing the time-independent input generating 
function r as 

qS(p) =_ f e-'P'p(I) dI (4) 

one finally obtains 

r = o k r J \  N (5) 
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In the limit of N ~  or, Eq. (5) can be written in a closed form, 

Z(p,  t) = ~ ( p )  e z(p ' ' -  1)- 1 (6) 

We now seek for a stationary solution of this equation. At first sight this 
seems paradoxical, since all loss mechanisms have been discarded at this 
stage. Still we remark that while growing, the dynamical system may attain 
a statistically stationary distribution of particle sizes, t7'8) This is precisely the 
quantity of interest in the present work. Assuming that such a distribution 
exists, we have in the long-time limit 

Z(p )  = ~ ( p )  e z~p)- ~ (7) 

Since we are interested in the tail of the steady-state mass distribution 
function p(m),  we seek solutions of this functional equation in the range of 
large droplet sizes or, from Eq. (2), of small Fourier variable p. Assuming 
that ~ (p)  is sufficiently short ranged so that ( I )  ~- oo (a case that includes, 
among others, Gaussian and exponential laws), we therefore write 

�9 ( p ) =  1 - - i ( I ) p  + . . .  (8) 

in lowest order of p. Furthermore, for any generating function corre- 
sponding to a continuous distribution (9) one may write the limiting form 

Z ( p )  = i - clpl = (9) 

where c is a constant number and u is an exponent which remains to be 
determined. This entails that Z ( p ) - 1  ~ IPl = and can be considered as a 
small variable. By expanding the right-hand side of Eq. (7) in lowest order 
of p, we finally obtain an explicit value for the exponent u and the 
generating function Z ( p )  as 

Z(p  ) = 1 - -  c' ein/4 ( I)1/2 IPl ~/2 (10) 

where the imaginary constant factor indicates that the distribution to 
which the generating function belongs is one-sided and not symmetric 
around some mean value. I~~ By taking the inverse Fourier transform of 
Eq. (10), we obtain (7's'1~ 

p ( m ) ~ m  -3/2 (11) 

showing that the steady-state mass distribution of large droplets in the 
growing phase follows an inverse power law. Notice that the existence of a 
well-behaved steady-state droplet size distribution provides an a posteriori 
justification of the working hypothesis that the cloud life cycle can be 
decomposed into two distinct phases. 

822/74/1-2-6 
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2.2. Precipitation Phase 

Equation (11) entails that the cloud produced during the growth 
phase is charged with many heavy droplets. This favors an instability, since 
large droplets start quitting the cloud due to gravity, thus giving rise to 
precipitation. When rain in the above sense is included in the cloud model, 
three phenomena take place simultaneously: input of particles, aggregation, 
and loss of droplets. 

We can extend the mean-field calculation of Section 2.1 to incorporate 
precipitation in a very simple way. We assume that water droplets fall out 
of the system in a random manner, independent of their mass. This 
assumption is not entirely satisfactory, since it is expected that due to 
gravity, larger droplets are the ones that will eventually precipitate in a 
cloud. However, the random loss assumption will be adopted for simplicity 
and will give us a good idea of the effects of the precipitation mechanism 
and its influence on the evolution of the warm cloud. 

We start again from the probability p(m, t) to find a particle of mass 
m at a particular time t in the cloud [see Eq. (1)]. We now need to take 
into account that in order to create a particle of mass m at a given site, the 
system has to spend a total mass equal to (1 + 2)m, ). being the percentage 
of the droplets leaving the system, 

p(m,t)=p(I) ~, (N~(1y ( 1 1 )  N-r 
r=o k r /kN] f i  P(mi, t -  1) ~-rk-omk 

i = 0  + l = m + , ; . m  

(12) 

By Fourier transforming Eq. (12) and by following the same lines as in 
Section 2.1, we finally obtain the following relation for the droplet-size 
distribution in the long-time regime: 

(13) 

If we assume again that the input distribution has a short tail and a mean 
(1 )  5 0  and ( I )  :# oo, we may write 

�9 ( p ) = l - i ( 1 ) p +  ... (14) 

and from Eq. (13) 

Z ( p ) = ( 1 - i ( l )  l - ~ 1 1 e x p [ Z ( 1 - ~ ) - I  ] (15) 
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Contrary to the growth phase, Z(p) can now be expanded in terms of 
simple powers of p, 

Z(p)= 1--i(m)p-- �89 2+ ... (16) 

By substituting Eq. (16) into Eq. (13) and keeping the lowest order of p, we 
can find the average mass of the cloud droplets as 

(I) 
( m )  = (17) 

2 

We conclude that 

( I )  
Z ( p ) =  1 -i---ff-p (18) 

to the lowest order in p. In other words, the corresponding distribution 
p(m) is short ranged with a finite mean, behaving qualitatively as an 
exponential in the limit of large size droplets. Notice that the mean mass 
of the droplets is proportional to the input and inversely proportional to 
the output ratio, as intuitively expected. 

The physical meaning of the above result is that the random loss 
process narrows the size spectrum of the mass distribution so that at the 
steady state only a negligible number of large droplets remain in the cloud. 
As a result, precipitation stops and the cloud, if still subject to a continuous 
input of droplets, regains the growth phase. 

A more realistic approach to account for precipitation would be to 
assume that the droplets fall with probability proportional to their mass, 
i.e., the larger droplets are more likely to fall due to gravity. We believe 
that this more realistic consideration will only enhance and accelerate the 
approach to the steady-state distribution, which is expected to become even 
narrower. Further work is needed to verify this conclusion. 

3. N U M E R I C A L  E X P E R I M E N T S  

In this section we develop a cloud simulation algorithm describing 
the microscopic dynamics of the water droplets. We will again address 
separately: the G phase, during which the cloud grows because of a ran- 
dom input of small droplets and subsequently through a droplet~lroplet 
aggregation mechanism; and the precipitation phase, during which, in 
addition to the above phenomena, loss of particles is also taken into 
account. 
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For computational reasons we limit ourselves to a two-dimensional 
lattice, which may be thought of as a horizontal section of the cubic 
volume introduced in Section 2. As a consequence the effect of gravity will 
not be considered�9 

3.1 .  G r o w t h  P h a s e  

We start with the lattice of N sites in which every site is initially 
occupied by a water droplet of mass m = 1. At every time step, a number 
of the order of N/3 water droplets of the smallest size, representing the con- 
tinuous inflow of mass from the ambient medium, reach the lattice sites 
and coagulate with the already existing droplets�9 Moreover, in order to 
model turbulent phenomena taking place inside the cloud, each droplet is 
allowed to move randomly to one of its nearest neighbors, independent of 
its size. Aggregation occurs if two or more such particles happen to meet 
on the same lattice site, at the same time, producing in this way a new 
droplet which carries now the sum of the masses of the incoming particles�9 
Finally, the boundary conditions used are periodic�9 

Following the above algorithm we have first evolved two-dimensional 
clouds of sizes 20 x 20 to 200 x 200 in the absence of breakup until a 
steady-state probality distribution is reached�9 In Fig. 1 we have plotted 
in a double logarithmic scale the cumulative drop size distribution P(m) 
(dots) as well as the probability density function p(m) (crosses) as a 
function of the droplet size m obtained for a 100 x 100 lattice after 15,000 
iterations. 

0 

"~10 .  1 + 

10 .2 ~,.+ 

I [ 

1 01 1 02 1 03 m 

Fig. 1. Asymptotic form of the cumulative probabil i ty distribution P(m) (dots), and the 
probabil ity density p(m) (crosses) as a function of the droplet size m, obtained after 15,000 
time units from a 100 x 100 lattice, simulating a horizonta! section of a warm cloud in the 
G phase 

1 0 ~ 
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We see that the cumulative droplet-size distribution follows a power 
law with an exponent -0 .5 ,  P(m)~m -~ Since the cumulative drop-size 
distribution function P(m) is the integral of the drop-size probability 
density function p(m), we conclude that in the limit of large mass (81 

p(m)~m -1"5 (19) 

which is in quantitative agreement with the analytical results based in the 
mean-field description of Section 2. This agreement is of no surprise, since 
in random walk and aggregation-related processes it is known that for 
dimensions d~> 2 the mean-field description is expected to hold. (1~) 

Notice that the initial distribution does not affect the numerical 
results, since it is soon forgotten due to the rearrangements performed by 
the aggregation and input processes. In addition, the steady-state results 
are independent of the input rate of droplets and the lattice size, provided 
that the latter exceeds a threshold below which boundary effects are domi- 
nant. A more realistic input model should involve an input of the form of 
a Gaussian-like distribution of droplets centered at reasonably small sizes. 
In this case, one expects that the part of the probability distribution 
corresponding to the small size drops of Fig. 1 will be replaced by a curve 
rising sharply from the origin to a maximum value, corresponding roughly 
to the maximum of the input term, and then decreasing according to 
Eq. (11). 

In Fig. 2 we show a snapshot of a cloud in the G phase, characterized 
by a drop-size distribution which has achieved the power-law behavior of 

Fig. 2. Snapshot of a 25 x 25 portion of a 200 x 200 lattice in which the asymptotic distribu- 
tion represented in Fig. 1 has been attained. The four classes of drops, small, intermediate, 
moderate, and large represent, respectively, 40, 30, 20, and 10% of the total probability mass. 
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Eq. (11). The drops have been subdivided into four classes according to 
their size range. The ranges of small, intermediate, moderate, and large 
drops are chosen to represent, respectively, 40, 30, 20, and 10% of the 
total probability mass. The size of the dots in Fig. 2 follows the above 
subdivision, while empty sites have not been marked. For clarity only a 
25 x 25 portion of the total 200 x 200 lattice is shown. We notice that the 
distribution is highly irregular, owing presumably to the presence of 
inhomogeneous fluctuations. A box counting algorithm (t2~ of this instan- 
taneous profile has been used to estimate the dimensionality Do of the large 
droplet set as well as of the entire droplet set. In both cases the dimension 
turns out to be Do = 1.9. Simulations of larger size clouds are necessary 
before drawing definitive conclusions about the fractal character of Do. 

As we mentioned in the Introduction, besides diffusion and aggrega- 
tion, other processes also participate in the formation of the droplet-size 
distribution. In particular, the droplet breakup occupies a reasonable part 
of the cloud literature. (2) Droplets can break either spontaneously or 
during collisions in all phases of the life of a cloud. In the following, we 
include a simple breakup mechanism during the G phase, in order to get a 
first estimation on the modifications of the droplet size distribution due to 
breakup. 

To take this effect into account, one needs to modify slightly the 
growth algorithm by adding a step during which the droplets can break 
with a certain probability. To simplify the simulations, we assume that a 
droplet of a given initial size m can break into two droplets of random sizes 
m' and m" such that m ' + m " = m .  One of the two resulting droplets 

Fig. 3. 
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As in Fig. 1, but in the presence of droplet breakup with m~ =50, m2=200, and 
breakup probability pbreak = 0.5. 
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remains on the original site, while the other chooses at random to 
aggregate with one of the four nearest neighbors. 

In Fig. 3 we show the cumulative probability distribution (dots) and 
the probability density (crosses) when breakup is considered in the 
G phase. Since this mechanism is strongly dependent on the masses "3~ of 
the droplets we have adopted the reasonable prescription that only masses 
in a range, say, between rn~ and m 2 may lead to breakup. We observe in 
the cumulative distribution a qualitatively new feature in the form of an 
inflection point, indicative of a maximum in the drop-size probability 
distribution. 

We suggest that this result constitutes the signature of the effects of the 
breakup mechanism in the features of the steady state. It is therefore 
reasonable to conjecture that the maximum observed for intermediate drop 
sizes in the probability distribution in real clouds is a consequence of the 
breakup mechanism. 

3.2. Prec ip i ta t ion  Phase 

A cloud that has accumulated large quantities of water vapor during 
the G phase and has achieved a power-law drop-size distribution is a 
"heavy," unstable cloud containing many droplets of large size. It is 
reasonable to expect that this cloud will start to precipitate. We extend the 
previous algorithm to include precipitation as follows: 

(a) Start again with a two-dimensional lattice and on every site of 
the lattice put a particle (droplet) of random size (mass). The 
initial mass distribution is not important, it will be forgotten for 
long times due to the processes of input, aggregation, and 
precipitation. 

(b) At every time step introduce randomly vapor droplets of size 1, 
on every lattice site with a certain probability "pinput," as in the 
case of the G phase. In these experiments we use pinput = 1/3. 

(c) Move randomly all the particles to one of their nearest-neighbor 
sites initiating the aggregation phenomena as in the G phase. 

(d) Finally, with a certain probability "prain" remove particles off 
the lattice, as rain. Here we use prain = 1/3-1/5. 

To simplify our model, we have neglected the effect of droplet breakup 
during the P phase. The above mechanism for the production of rain in 
which every particle can drop out of the cloud as rain is a very simplistic 
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one. In reality, as pointed out in Section 2, we should expect that only the 
largest droplets will produce rain. 

Using the above algorithm we evolved two-dimensional clouds of sizes 
20 x 20 to 200 x 200 sites, for up to 15,000 time steps. In Fig. 4 we show the 
drop-size distribution as a function of the droplet size. 

In a simple logarithmic scale the data follow, for large droplet sizes, a 
straight line, which indicates an exponential decay behavior. This exponen- 
tial behavior agrees with the mean-field result on aggregation with input 
and loss described in Section 2. 

In Fig. 5a we show the drop-size cumulative probability distribution of 
precipitation just  underneath the cloud as a function of the droplet mass. 
A clear-cut exponential law appears, for large m, in agreement with the 
analytical results of Section 2. On the other hand, traditionally, the prob- 
ability density obtained by field observation data can be fitted grossly by 
an exponential law as a function of the droplet diameter D. t1"2~ As seen 
from Fig. 5b, there is a range of radii in which the distribution as a 
function of D can also be fitted reasonably well by an exponential law. The 
effective exponent A turns out to be A ~ - 1.8. Expressing A in terms of the 
rainfall rate R from the empirical Marschal-Palmer law c1'2"24~ 

IA[ = 4.1R-~ (20) 

one obtains then information on the important parameter R. At this stage 
quantitative results cannot be claimed, as no space and time scales have 
been introduced in the lattice model. 

Fig. 4. 
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Fig. 5. ( a )  T h e  c u m u l a t i v e  probab i l i t y  d i s t r ibut ion  P o f  the  prec ip i ta t ing  drop le t s  as a 

funct ion  o f  the  d rop le t  m a s s  m, (b)  the  probab i l i ty  dens i ty  p as  a funct ion  o f  the  drop le t  

d i a m e t e r  D ,  resu l t ing  f r o m  a 100 x 100 c l o u d  lat t ice  after  15 ,000  t imes  units.  

4. CONCLUSIONS 

We have studied theoretically in the mean-field limit and numerically 
in two dimensions the evolution of a warm cloud, modeled as an ensemble 
of aggregating water droplets. We have shown that the combined effects of 
aggregation and water input create a "heavy" cloud containing many 
droplets of large mass described by a drop-size distribution in the form of 
a power law p(m)~m -1"5. When a cloud is so heavily charged, precipita- 
tion is initiated. We have shown that the combined effects of input, 
aggregation, and loss lead to a "light" cloud with only few droplets of large 
mass. In fact the drop-size distribution exhibits now an exponential decay. 

It is tempting to envisage a cloud as a collection of water droplets 
oscillating between power-law behavior and exponential decay. If we keep 
the input and loss fluxes constant, these oscillations are expected to be 
regular. However, in nature the input of vapor droplets does not have a 
constant rate, but varies according to the weather conditions, the season, the 
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availability of water vapor, etc. In other words, the cloud oscillations that 
one can observe in nature are of aperiodic nature rather than periodic ones. 

Actually, one may arrive at a unified formulation of the two phases 
in the life of a cloud by considering that the parameter ). varies in a 
continuous range. When 2 is finite, loss is present, the average droplet mass 
( m )  = ( I ) / 2  is finite, and the probability distribution reduces, in the range 
m ~ l ,  to 

p ( r n ) ~ e  .. . .  /<">, rn~> 1 (21) 

As 2 decreases, the average droplet mass increases and the exponential 
distribution becomes long-ranged in the limit ~. - ,  0, ( rn )  ~ ~ ,  where the 
probability distribution is unnormalizable. This effect signals the failure of 
the procedure leading to Eq. (16). Slowly decaying terms become then 
dominant, thus leading to the inverse power-law terms found in the 
G phase. This change in behavior is analogous to what happens in a phase 
transition. In this respect 2 may be considered as the distance from 
criticality, whereas ( m )  plays the role of the order parameter. 

In the range of intermediate values of droplet size we have shown that 
the spontaneous breakup of the cloud droplets gives rise to a hump in the 
probability distribution. Keeping in mind that for very small sizes an 
additional sharp maximum is likely to occur due to the nature of the input 
distribution, it seems legitimate to assert that this provides a plausible 
mechanism for the bimodality observed in certain types of clouds. 

A different growth and coalescence algorithm has recently been 
developed by MeakinJ ~5~ The model involves input of particles, local 
growth aggregates, and loss. In the present work in addition to growth and 
coalescence, specific mechanisms relevant to the life cycle of warm clouds 
have been incorporated, such as droplet motion, breakup, and loss by 
precipitation. 

All our simulations have been performed in two dimensions. Clearly 
three-dimensional simulations are desirable in order to model more closely 
the dynamics of a real cloud. However, the static behavior and many 
dynamical properties of random walks and aggregation are not very 
different in two and three dimensions. One therefore expects that the 
asymptotic behavior of the two-dimensional cloud will also persist in three 
dimensions, since d =  2 is the upper critical dimension for these types of 
models. Consequently, the same type of instability and initiation of 
precipation is expected in three dimensions. 

In a future work a more elaborate analysis is planned, taking into 
account various types of droplet breakup mechanisms, alternative loss 
mechanisms favoring heavy particles in the process of precipitation, as well 
as investigations on the role of the vertical dimension. 
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